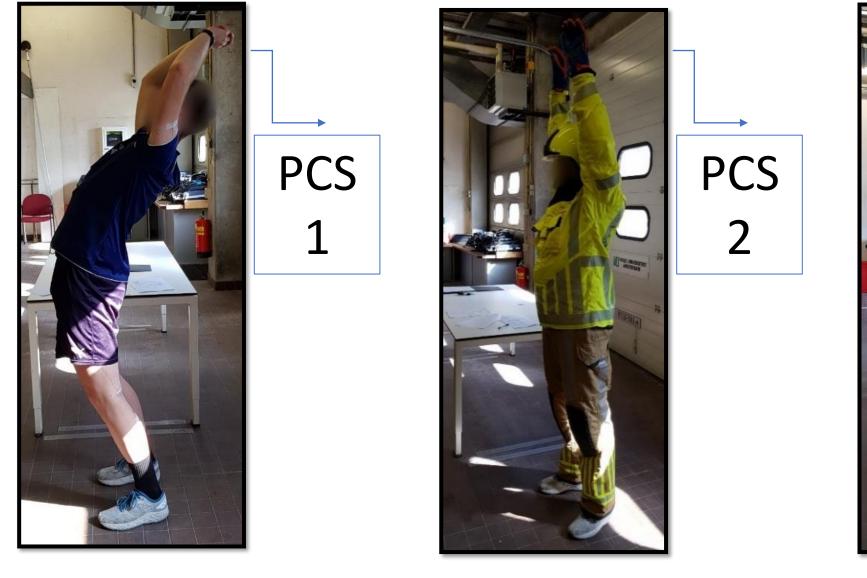
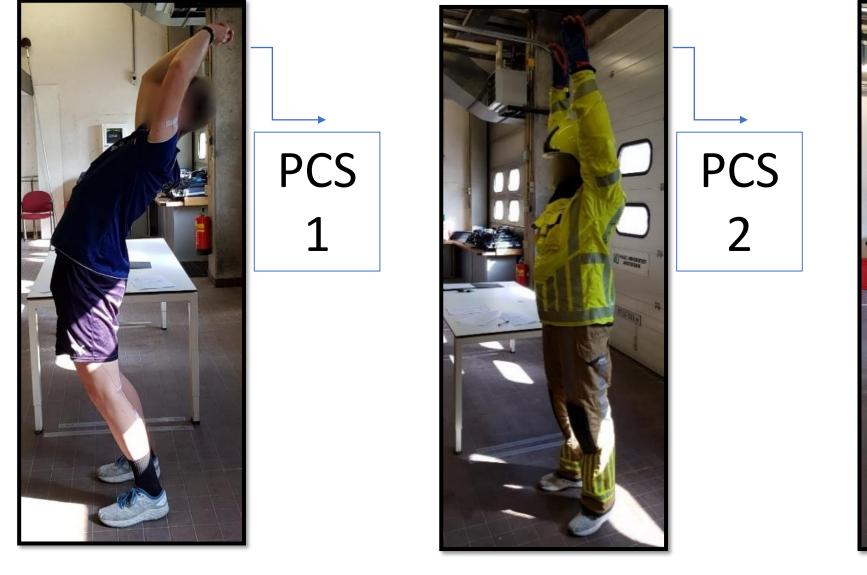
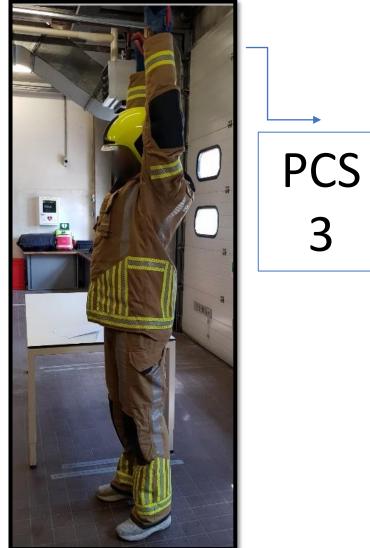
ERGONOMIC AND PERFORMANCE DIFFERENCES BETWEEN FIREFIGHTER PROTECTIVE CLOTHING SYSTEMS

Tim van Harten¹, Kalev Kuklane², Ronald Heus², Hein Daanen¹


¹ Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Amsterdam Movement Sciences, Vrije Universiteit Amsterdam, The Netherlands ² Netherlands Institute for Public Safety, Zoetermeer, The Netherlands


Introduction


Protective clothing systems (PCS) protect firefighters from hazards. PCS testing procedures need standardization. Therefore 3 PCS were tested to quantify differences and to provide recommendations for ergonomic test battery optimization.

Methods

6 males (26.8±11.4 y) performed 12 consecutive physical firefighter task related- and 9 stretching exercises in three PCS in balanced order in 21.1±0.2 °C and 37±5 % RH.

3

Methods (measures)

Skin temperatures (T_{skin}) Rectal temperature (T_{rectal}) Heart rate (HR) Mean body temperature (T_{body})

Performance time/distance Rating of perceived exertion (RPE) Thermal sensation Comfort Skin Humidity Fit and reach score scale A & B (1-5)

Increases over time (Δ -values) were calculated.

Results

Table 1. Temperature and heart rate increases over time for 3
 protective clothing systems (mean ± SD).

$ \Delta T_{skin} (^{\circ}C)^{*} \qquad -0.26 \pm 0.63 ^{23} \qquad 0.60 \pm 0.31 ^{13} \qquad 0.81 \pm 0.46 ^{12} \\ \Delta T_{rectal} (^{\circ}C)^{*} \qquad -0.03 \pm 0.06 ^{2} \qquad 0.00 \pm 0.07 ^{1} \qquad -0.01 \pm 0.06 \\ \Delta T_{body} (^{\circ}C)^{*} \qquad -0.07 \pm 0.11 ^{23} \qquad 0.12 \pm 0.08 ^{13} \qquad 0.15 \pm 0.12 ^{12} $		PCS1	PCS2	PCS3
	ΔT _{skin} (°C)*	-0.26±0.63 ²³	0.60±0.31 ¹³	0.81±0.46 ¹²
ΔT _{body} (°C)* -0.07±0.11 ²³ 0.12±0.08 ¹³ 0.15±0.12 ¹²	ΔT _{rectal} (°C)*	-0.03±0.06 ²	0.00±0.07 ¹	-0.01±0.06
	ΔT _{body} (°C)*	-0.07±0.11 23	0.12±0.08 ¹³	0.15±0.12 ¹²

Donning & doffing time: PCS2<PCS3 Ladder climbing time: PCS1<PCS3

Elbow mobility movement restriction (scale B): PCS1>PCS3

Remaining measures: no significant differences between PCS

* = p<0.001.

In superscript = PCS with which a significant difference was found.

Conclusions

The two firefighter PCS differ in heat strain; Δ Tskin, Δ Tbody and Δ HR. The use of Δ Tbody for fire fighter clothing evaluation is recommended since it gives the best representation of body heat storage.

NIPV Nederlands Instituut Publieke Veiligheid

Contact: Timvharten@gmail.com